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Abstract

Di Bello, Stout, and Roussos (1993) have developed a new item response model, called the

Unified Model. which brings together the discrete. deterministic aspects of cognition favored by

cognitive scientists, and the continuous, stochastic aspects of test response behavior that underlie

item response theory. The Unified Model blends psychometric and cognitive science viewpoints

and promises to allow the practitioner to recover cognitive information from simple. well-designed

tests.

In this paper, we propose an estimation procedure for the structural model parameters of

the Unified Model that uses the marginal maximum likelihood estimation approach by Bock and

Ait kin (1981) and utilizes the ENI algorithm by Dempster, Laird. and Rubin (1977). In the

maximization (M) Step of the EM algorithm, because of the difficulties in computing the second

derivative (Hessian) matrix and the possibility of mukiple local maxima. we propose using an

alternative maximization procedure, called Evolution Programming (Nlichalewicz 1994). which

has good properties in finding a global extremum. A simulation study is then given to show the

effectiveness of our estimation procedure.

Key words: Unified Model, cognitive, item response theory, marginal maximum likelihood

estimation, EM algorithm, Evolution Programming.



1 Introduction

Di Bello, Stout, and Roussos (1993) have proposed a new psychometric approach to cognitive

diagnostic assessment. They develop a new item response model, called the Unified Model, which

brings together the discrete, deterministic aspects of cognition favored by cognitive scientists and

the continuous, stochastic aspects of test response behavior that underlie item response theory.

The Unified Model blends psychometric and cognitive science viewpoints and promises to allow

the practitioner to recover cognitive information from simple, well-designed tests.

The ultimate goal of developing the Unified Model is to enable practitioners to cognitively

classify the test takers and estimate their cognitive abilities, thereby extracting useful information

about the test takers underlying cognitive processes on the test and their cognitive strengthes

and weaknesses. To achieve this goal, it is essential to be able to estimate the model parameters

before we can go on to classify examinees and estimate their abilities. Unfortunately, due to its

structural complexity, until now t here has been no estimation package available for the Unified

Model. There are difficulties associated with the estimation problem, the main and foremost

problem being the identifiability and estimability issues involving the model parameters. In this

paper, we first give a brief overview of the Unified Model from the cognitive diagnosis viewpoint.

After the overview, we will discuss briefly the relationship between the deterministically predicted

ideal response patterns and the attribute states, as well as the identifiability and est imability

issues involving the item parameters and the latent ability distribution parameters.

The third section of this paper concerns the estimation of the structural parameters of the

Unified Model. In this section we propose an estimation procedure using the marginal maxi-

mum likelihood estimation approach by Bock and Aitkin (1981). Since we cannot maximize the

marginal likelihood directly, we utilize the EM algorithm by Dempster. Laird, and Rubin (1977).

In t he maximization (M) step of the EM algorit hm, because of t he difficulties in computing the

second derivative (Hessian) matrix and t he possibility of multiple local maxima. we propese us-

ing Evolution Programming (Michalewicz, 1994), which has good properties in finding a global

ext remum.

In the fourth section of this paper, a simulation study is present showing t he effectiveness of

Our proposed est imat ion procedure. We en(' the paper wit h a summary section.
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2 The Unified Cognitive/IRT Model

2.1 Review of the Unified Model

The traditional role of tests in Education and Psychology is to rank the examinees and/or

judge their proficiencies within a broad area of knowledge. For example, the GRE tests examinee

proficiencies on verbal, quantitative, and analytical reasoning skills. In cognitive diagnosis. when

giving a te-it, the test developers and administrators are interested not only in judging exami-

nee proficiencies in a specific area of knowledge. but also in getting information on examinees'

underlying cognitive processes used on the test. This happens in the usual classroom setting:

when giving a test, a teacher not only wants to know which grade Johnny gets, but perhaps

more importantly, she wants to know whether Johnny has really mastered the Algebraic Rules

of Exponents. In other words, she wants to assess the examinee mastery on a variety of cognitive

attributes. An attribute represents a cognitive quality required for solution of a test item: it

can be anything based on the procedures, skills, processes, strategies, or t he knowledge that an

examinee needs to possess to solve the item.

There are two distinct approaches in cognitive diagnosis: the continuous multidimensional

latent trait approach favored by Psychometricians and the discrete approach favored by cognitive

scientists. In the usual latent trait approach, a few broadly described continuous latent traits

are postulated to account for systematic examinee response behavior on a test. As Snow and

Lohman (1989) noted, this approach has a weak cognitive foundation. Although it sometimes

sounds like the multidimensional underlying latent traits are cognitive in nature, it is generally

agreed that this approach has only been successful with broad, composite abilities. In particular.

for example, it is of little help in trying to determine specific cognitive characteristics of examinees

for the purpose of instruction.

For the discrete approach. an example is latent class analysis (see for example, Lazersfeld and

llenry, 1968). A latent class analysis involves the postulation of a number of latent classes. In a

lat cut class analysis. examinee ability is not represented as a continuous variable on dimensions

defined by the cognitive components. Instead, it is modeled by a vector of Is and Os indicating

for each cognitive component whether an examinee does or does not possess the skills needed for

successful performance on the component. Latent class analyses eit her involve a large number
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of classes so that it is infeasible for estimation, or there are only a. few latent classes that the

results are similar to multidimensional latent trait analyses in their coarseness of latent structure

assumed (Bock and Aitkin, 1981; Bartholomew, 1987; Takane and de Leeuw, 1987; Haertel,

1990).

The Unified Model approach blends psychometric and cognitive science viewpoints. It is

based upon a new item response model, called the Unified Model. Below we will give a brief

review of the Unified Model.

Following Tatsuoka (Tatsuoka, K.E., 1984, 1985, 1990; Tatsuoka, N.K. and Tatsuoka, M.M.,

1987), we consider a test of length I with K postulated cognitive attributes, and a matrix
Q = (gki)Kx /, where

1 if item i requires attribute k
gki =

0 if not

The K attributes include those of interest for cognitive diagnosis, as well as others inadvertently

present. in the test. The Q matrix specifies which attributes must be mastered in order to

correctly answer each item.

The Q matrix represents a. presumed choice of strategy for each it em. By strategy we mean

the steps that are used in answering the item.

Let cl = ..., )7' be a vector denoting an examinee's attribute state, where .r denotes

the transpose of vector .r, and

1 if examinee has mastered attribute k
nk =

0 if not

A given examinee i,ttribute state cl = (ni, __ow )1". along with the Q matrix produces thr idral

response pattern associated with ca and determined by Q:

rQ(a) = (si, ...MT (1)

It is defined as follows: for the ;dea response, item i is answered correctly if the examinee pos-

sesses all the attributes as required by Q for this item: otherwise, item i is answered incorrectly.

In mathematical terms,

{ 0 if there is an attribute k for which (Ai = 1 but rlk = 0
Xi =

1 if not

t,

(2)



In reality, examinee responses are seldom consistent with such a simple deterministic model.

We expect examinee responses to differ from the ideal response patterns. The Unified Model

approach models the probabilistic variation in examinee responses by incorporating the following

four major sources of response variation.

Strategy: The exarninee may use a different strategy from that presumed by the

C) matrix.

Completeness: An item may require attributes that are not listed in the Q matrix. If

so, we will say the Q matrix is incomplete for the .m.

Posit ivity: In some cases, an examinee who possesses an attribute will fail to

apply it correctly to an item, and another examinee who lacks the

attribute will apply it correctly to the item. If such response

behavior is prevalent among the examinees, we will say the attribute

is low positive for the item.

Slips: The examinee may comrnit a random error.

To allow for cases in which multiple strategies are used by examinees and cases in which the Q

matrix is incomplete, the notion of a latent residual ability i is in, .duced in the Unified Model.

Hence under the Unified Model, the complete latent ability for an examinee is 0 = (ti,j)7. =

(71. (11,-)T, where a is the examinee's attribute state and 71 is his residual ability.

Under the Unified Model, the probability of an examinee tilswering item i correctly (denoted

= 1) given that he has ability (77,a,T)T is

where

= = 1117,a; ) (1 p)[(1,Sni i(71 2ci) ± (1 di)Pb,(0] (3)

p = probability of a random slip

= probability of selecting Q strategy for item i

= completeness index of Q matrix for item i
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= P(applying required attributes correctly to ky)

7rki = P(applying attribute k correctly to flak = 1)

rki = P(applying attribute k correctly to flak = 0)
1

= 1 parameter logistic (1PL) with difficulty biPb,(71) +-c--1 .7o 1 (h1-b,)

= irii,71-Ki,r1iIIrKi)T, = 1,

The four sources of response variation are incorporated in the Unified Model through the

parameters p, ci's, di's, the 7r's and the r's, for example, the 7r's and r's a-- used to model the

positivity of the attributes. For a derivation of the model, the reader is directed to DiBello,

Stout, and Roussos (1993).

From now on, we assume p = 0 (no slip) for all items. Thus the probability of answering item

i correctly given examinee ability (7/, QT)T becomes

Pi(q, di) Ph,(71 + 2c i) + (1 (I 1)Pb, (q)

2.2 Ideal response patterns

A given examinee attribute state a, along with the Q matrix produces the ideal response

pattern associated with a as defined by (1) and (2). Since we postulate K attributes, there are

2" different attribute states. The number of different ideal response patterns, however, is usually

smaller than 21. because of the fact that different attribute states may produce exactly the same

ideal response patterh.

Examplc I: For the Q matrix given below,

Q =

1 0 0 1 0 0 1 1 0 0

1 0 1 0 0 1 0 0 0 1

0 1 1 0 0 1 0 0 1 0

0 1 1 0 1 0 0 1 0 0

0 1 0 1 1 0 0 0 1 0

bot h att ribute states (1, 0, 1, 1, 0)T and (1. 0, 0, 1, 01" produce t he same ideal response pattern

(0,0.0,0,0,0,1,1,0,0)T.
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Definition I : For two attribute states ol = (au__ 010T and (12 = (021,...,a2K)7, (I, is a

substate of a2 and is denoted by al < az, if alk <. 02k for k = 1,, K.

In example 1, attribute state (1,0,0,1,0)T is a substate of attribute state (1.0,1,1,0)T.

Definition 2: Among all the attribute states that produce the same ideal response pattern,

the canonical state is the one that has the smallest number of l's.

In example 1, (1,0,0,1,0)T is the canonical state that produces the ideal response pattern

(0, 0, 0, 0, 0, 0, 1, 1, 0, 0)T.

It can be shown that the canonical state as given by the above definition is unique.

Definition 3: An attribute state a = (ai,...,0K)T is a direct sum of two attribute states

= 11010T and a2 = (021, 02K)T, denoted by = Oj V a2, if

ok = aik V o2k = max(oik.u2k). for k 1, K

Whether an attribute state is a canonical state can be determined by the following proposition.

Proposition 1: An attribute state is a canonical state, if

it is the attribute state of all l's or the attribute state of ail O's.

it. is a column of the Q matrix, or

it has subst at es that are columns of the Q matrix and it is the direct sum of these substates.

Example 2: For the Q matrix given below,

1 1 1 0 0

0 0 1 1 0

0 0 0 1 1

0 0 0 0 1

at t ribute state (0, 1, 1, 1)T is a canonical state, because it has subst at es (0, 1, 1, 0)1' and (0, 0, 1, 1 ) I

that are columns of Q. and the direct sum of these two substat es is (0.1,1,1)T.

As results of the above proposition, we have the following corollaries concerning the number

of canonical states.

6
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Corollary I: If among the K attributes postulated, only K' are required by all the items,

there will be at most 2" canonical states.

In this case, there are K K' attributes not required by any item; in other words, they are

redundant. Below we assume this situation never happens.

Corollary : Consider all the items each requiring a single attribute, if the number of different

attributes required by these items is K'. there will be at least 2K` canonical states.

The canonical states can now be used as representatives of attribute classes, so we can index

the set of all ideal response patterns, or the set of attribute classes by / = 1..... L. and replace

attribute state ü by index I in our notation heretofore. The latent space can now be thought of

as {(ri. 1)T : E R,/ =

For the distribution of latent ability IF, we assume in our model a finite mixture of

normals with the mixing probability m and N(111,0-2) for given /, i.e.. the density of latent ability

distribution
21

7(2: P) 77(77 = Pt cxp[ Pi)

V27ra 90-2

where t he latent ability distribution parameters

\= (Pl --PL. PI, P L
2

)

(5)

2.3 Log likelihood function

Suppose there are a total of .V examinees. Let B = (1......11) be the totality of item

parameters, and assume the latent space is complete with respect to the latent ability vector 0

so that the local independence given 0 holds

P(E, 10; B ) = H P( 10; 3i ) /(0; ) PJO:
=_-

where Y is the response vector for examinee n.

The marginal likelihood function, which is the likelihood function given the response matrix

Y and the matrix of latent abilities 0 integrated over the latent ability distribution. is given by

L(B,n1Y) = f L(B,oly,e)F(de) = H
n =1

BEST COPY AVAILABLE



Here we have used the independence of examinees to factor the likelihood function L(B4O1Y.

and to factor F (de) into a product measure.

'faking the logarithm and using (5), the log likelihood function given Y is

L
1

In L(B4O1Y) = E In E I P(Ynli1,1;B)pj xp[
(ii

)0.1211)2 1(111
tt=1 i=1 VT7ro-

2.4 Some model identifiability and estimability issues

(6)

'Phere are various identifiability and estimability problems involving the parameters of the

Unified Model. First we give two definitions, which deal with two different causes for being

unable to estimate model parameters.

Definition 4: If a probability model p(ylo) is parametrized by a vector o. we say the model

parameter 0 is not identifiable if there exists a 61 o such that for all y

p(y) = MykY)

i.e., the distribution of y is the same for 6 and o'. In this case, the data simply cannot yield any

information to distinguish o from 0'. Further, if in constraints (e.g., fixMg ln components of 0)

render the n-dimensional o identifiable, we say that n ni of the components are identifiable.

Definition 5: If a model P(YI0) is parametrized by a vector o = o)T. we say a

component ok of the model parameter 6 is not estimable if the model does not actually involve

the component. In this case, the data simply cannot yield any information about ok.

First, let us consider an identifiability problem that arises involving the ir's and r's.

Proposition :2: For item i, let IV; = qk,, the nutnber of attributes required by i. Then
ki

among the 2Ki of rs and r's for which gki = 1, only K, -I- 1 of them are identifiable.

This identifiability problem is caused by the nonlinear constraints among the Se,;s resulting

from their being products of the 71-'s and r's. For illustrative purposes, suppose there are just

kvo attributes and item 1 requires both. Recall (3) and consider its S's. Then we have four

Tr's and r's fs-ii71-217'111'21) to he estimated. or equivalently four to he estimated =

7rt1ir2i S21 7111'21. S31 721 rim. add = r11r21. Here the first index of the S's denotes the



attribute states (1,1)T, (1,0)T, (0,1)T, and (0,0)T, respectively). Since S 521S31/Sil, only

three S's are identifiable, or equivalently only three of the four 7r's and r's are identifiable.

To resolve the above identifiability problem involving the 7r's and r's, if an item i requires Ki

attributes, we will fix the first Ki 1 7r's at 1, leaving only the last 71- free. so that item i now

has only Ni + 1 free Tr and r parameters.

Next, let us look at the identifiability issue involving the bi and pl. recalling (3) and (5).

Proposition 3: If holding all other parameters fixed, and adding the same constant to every

bi and every Pi, the log likelihood function In L(B. 61Y) will not change. Note that this is of

course the usual identifiability problem occurring with ordinary IRT logistic modelilg.

Proofs of the above results can be found in iang- (1996). There are other identifiability and

est imability problems; below we give some examples. If di = 1 (i.e., we are certain the Q strategy

for item i will be selected by all examinees), the Unified Model for the ith item becomes

Since .

= A,(71 ± 2c1)

PO 2ci) =

we cannot estimate bi and ci separately when di = I. In the sense of Definition -1, b, and ci are

unidentifiable when d, = 1, because different sets of (bi.,e1) with the same value at bi 2e, will

give the same Pi(q,a; 3.). Similarly, we can argue that if di is close to I, we will not have enough

information from the data to accurately estimate b, and c, separat( ly, but rather can estimate

them together through the linear combination bi

If d, = 0, then

Pi(71, = Pb, (//)

In this case, w«-annot estimate for any- possible a, nor can we estiinate ci (i.e.. and c,

are not ('stimable in the sense of Definit1011 5).

Since di is the probability of selecting Q strategy for item i. we can normally assume di

is bounded away from 0, unless the Q matrix under consideration is badly constructed from

cogn it i ve perspect i ye.

9
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3 Estimating the Structural Pvsameters of the Unified
Model

Since directly maximizing In L(B, !Y ) over B and 0 is infeasible. we use the EM algorithm.

3.1 EM algorithm for the Unified Model

The EM algorithm, as its name suggests. is divided into I wo steps: the E (expectat 1. step,

and the NI (maximization) step. Cyclical application of the E step and the NI step continues till

a certain convergence criterion is met.

In the E step, the conditional expectation of log likelihood of complete data given the incom-

plete data and current parameter estimates is computed. In our study. the incomplete data is

the observed response matrix Y and the complete data is the responses plus the examinee latent

ability matrix ®. So in the E step, the following (-plant is computed

OB. o: B', a') = E[ln L(B.01Y, 0)1Y; W. (.1

where the expectation is taken with respect to O. fiery B' and 01 are the parameter estimates

resulted from the NI step in the previous iteration. IIere and below we follow the standard

notation in the literature of EM algorithm. It is understood that the Q functions in the E and

NI steps depend on the observed response matrix Y.

It t urns out that for the Unified Model the following (lecomposition holds

OB.0: B'. o') = (No; B'. o') + Q,( 3i: W. a'

where Q0(0; B'. 0') involves only the ability distribution parameter o and each Q,(3 ; B'. ch_ _ _ _. _
hivolves only the item structure parameter 3 for item i.,

In the NI step, Q( B. a; B'. a') is maximized over the parameters B and a for given ..1._ , 0' and_ _ _ _
Y. I3ecause of the decomposition in the F. step. we can separately maximize Q0(0: 13'. 0') over 0_ _ _
and ea('h Q;(3 ; B'. 0') over 3 ,

While there exists a closed-form solution o for maximizing QM 0; B'. o') over 0. no closed-

form solution exists for maximizing Q1(3 ; B', over 3 . Hecause of he difficult ies ill computing,

10



the derivatives, especially the second derivative (Hessian) matrix, and the possibility of many

local maxima, the conventional Newton-Haphson method is not feasible to apply. So instead of

using Newton-Raphson. we use Evolution Programming (Michalewicz, 1991) to maximize each

B', ci) over 3i.

Any optimization task can be thought of as a search through a space of potential solutions.

Evolution Programming is a stochastic algorithm whose search method emulates the natural

phenomena of genetic inheritance and Darwinian strife for survival. An Evolution Programming

maintains a population of individuals P(I) = {.1:,...,a-t} for use in iteration t. Each individual

is a vector and represents a potential solution to the problem at hand (i.e., a potential optimizer

of the problem). Each solution is evaluated to give some measure of fitness-. Then, as a

result of iteration t a new population IT +1) for use in iteration + 1 is formed by selecting the

inure "fit- individuals (the select step). Some members of this new population undergo trans-

formations (alter step) by means of "genetic- operators to form new potential solutions. 'fliere

are unary transformations (mutation type), which create new individuals by a small change in a

single individual, and higher order transformations (crossover type). which create new individu-

als by combining segments from several (two or more) individuals. After several generations the

program converges with t he goal being that the hest individual in t his final generation represent s

a near-optimum solution.

For our problems at hand. since we are maximizing each Q,(3 : , B'. ci) user 3 he populat ion

of individuals are vectors of possible values for 3,. One iteration consist s of operat ions such

as mutation. crossover, and selection. Evolution continues through generations until a certain

convergence accuracy is obi aine(h. Then the maximizer 3 of Q33 : B'. o') i given by the hest

solution vector of the final generation.

4 Simulation Study and Results

We use a carefully constructed Q mat rix with 5 post ulated at t Tibia es. and an examinee pop-

ulat ion having a selected subset uf all 32 possible at tribut e states to demonst rate the effect iveness

of our estimation proceditre.

We po,:tulate 10 -core- it(111',. The Q matrix and the item parameter setting,-; are given



in Table 1. The rationale of choosing the item parameter setting as given in Table I is that

the completeness index c, of the Q is moderate to high. That is, it is relatively a

single strategy test (i.e., di's are close to 1 so that we are fairly sure an examinee will choose

the single strategy postulated by the Q matrix), and the positivity is high so that the r's are

close to 1 while the c's are small. With a set of well defined attributes and reasonably well

constructed Q matrix, our choire of the item parameter setting is quite plausible. The simulated

test consists of -10 items obtained by replicating each core iteni 4 thnes. For the Q matrix

postulated, there are a total of 21 possible attribute classes (i.e., there are only 24 (Iifferent ideal

response pat terns resulting in 21 attribute classes from the :32 att ribute states). 1000 examinees

are generated by assuming that only 10 of the 21 attribute classes actually occur in the examinee

population. Table 2 gives the latent ability distribution parameter settings for the 10 classes,

along with their representative canonical states and their ideal response patterns. In Table 2 and

subsequent tables, the column lable IR refers to ideal response pattern number. Note that while

our choice of the Ill is sornewhat arbitrary. the pj ordering is consistent with the partial orderg

existing among the attribute states. Because the empirical work needed to find -realistic- model

parameter values (B. 0) has not been done. we have been forced to select what seem to be

plausible values for the model parameters.

Recall that the Unified Model for the it h item is given by ( -1). The estimated item and latent

ability distribution parameters as a result of our 1.N1 algorithm run are given in Tables 3 and 1.

re,pectively.
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Table 1. Q matrix and true item parameters

item attr. 1 attr. 2 attr. 3 attr. 4 attr. 5 b, c, d,

1

7r

r
0.9
0.1

0.8
0.4

-0.3497 0.90 0.90

2 7
I

0.8
OA

1.0

03
0.9
0.1

-0.1929 0.70 0.95

3
7r

r
1.0

0.1

0.8
0.3

0.8
0.2

-0.0082 0.90 0.65

1
7r

r

1.0

0.0
1.0

0.4
0.0189 0.60 0.95

5
r
r

1.0
0.2

0.9
0.3

-0.1832 0.90 0.95

6
7

7.

0.8
0.1

i 1.0

0.2
0.9343 0.70 0.95

_

i

7

r

0.9
0.3

-0.3339 0.10 0.85

8
7r

r
0.8
0.4

0.9
0.0

-0.1006 0.90 0.95

9
r
r

1.0

0.4
1.0

0.3
1.0964 0.90 0.95

10
7
r

0.8
0.-1

0.2996 0.60 0.95

Table 2. True latent ability distribution parameters

IR

attribute ideal t rue t rue

st ate response PI

7

9

2

11

3

24

1

5

6

00111 01001 00010 0.09 -0.057

01101 00000 10011 0.11 0.760

01111 01101 10011 0.08 0.-133

10011 00011 01100 0.11 -0.392

10111 01011 01110 0.09 0.551

11000 10000 01001 0.11 -0.727

11011 10011 01101 0.10 -0.964

11101 10010 11011 0.10 0.584

11110 10100 11101 0.11 0.148

11111 11111 11111 0.10 0.762

1.00

13
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Table 3. Estimated item parameters

item attr. 1 attr. 2 attr. 3 attr. 4 attr. 5 bi ci di

1

r
r

1.00

0.17
0.72
0.37

-0.5:33 0.80 0.97

2
r
I'

1.00
0.4:3

1.00
0.28

0.74

0.05
0.219 0.90 0.93

3
r
r

1.00
0.05

1.00
0.49

0.69
0.07

-0.009 0.70 0.65

4
r
r

1.00

0.00

1.00
0.38

0.102 0.60 0.94

5
77

I r
1.00
0.22

0.90
0.26

-0.272 0.90 0.97

6
r 0.07 0.20

1.165 0.80 0.85

- 7i 0 . 8 6
-0.477 0.50 0.66

r
r

1.00

0.50
0.70
0.00

-0.390 0.90 0.98

7r

r
1.00
0.3:3

0.97
0.27

-0.090 0.30 0.95

10
7r

r
0.8
0.39

0.770 0.80 0.85

Table 4. True and estimated ability distribution parameters

IR

attribute
state

ideal

response

true
pi

est.

Pi

true

iii

est .

Pi

7 00111 01001 00010 0.09 0.0631 -0.057 0.193:3

9 01101 00000 10011 0.11 0.0975 -0.760 -0.6773

2 01111 01101 10011 0.08 0.1037 0.-133 -0.0190

11 10011 00011 01100 0.11 0.1170 -0.392 -0.1286

10111 01011 01110 0.09 0.1033 0.551 0.5177

2.1 11000 10000 01001 0.11 0.1175 -0.727 -0.5631

11011 10011 01101 0.10 0.0930 -0.964 -0.7296

5 11101 10010 11011 0.10 0 0837 0.584 0.5579

11110 10100 11101 0.11 0.1001 0.4.18 0.9197

11111 11111 11111 0.10 0.09.10 0.762 0.898.1

est . o 0.931

1 1
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From Table .1, we notice that the true and estimated mixing probabilities are close, while tlw

estimated pi values are often not close to the true p./. Because of the way the pis function in the

likelihood through the latent ability distribution, it is relatively more difficult, to estimate them

accurately, especially when the possibility of relatively flat likelihood surface exists. Taking this

into account, we think the estimated iiI values are satisfactory (see also the comment below on

the comparison between the likelihood at the true and estimated parameters). Note that we

start the EM algorithm run with equal mixing probabilities ( -1 as initial values for all the 24
9,1

possible attribute classes. From Table 1, we see that our procedure selects the right 10 classes,

the estimated mixing probabilities for the other 11 arc all approximately 0 (with an average of

0.0019). as desired. Hence their estimated values are not given.

Because of Proposition 2, different sets of r's and r's can generate the same set of S's. In our

estimation procedure, remember that for an item 7 that requires Ki attributes we (arbitrarily)

fix the first A', 1 of the r's at 1 to reduce the indeterminacy among the w's and r's. As a

result, the parameter estimates for some items may appear to be far away from their true values.

Because of this problem. to determine the estimation accuracy of item parameters, we need to

instead compare the estimated S,,'s with their true values using the estitnated and true values

of 71-'s and r's. From Table 3 it is clear that for items 1, 5, 7. 9. and 10 the estimates of w's and

r's are close to their true values. Consequently for these items the est iinated S, i's will be close._.

to the true values. Because the estimates of 7r*ti and r's are far off the true values for items 1. 2,

3, 6, and 8, Tables 5 and 6 show the comparisons of the estimated .S'i's and their true values for

these items. Table .5 compares the true values for S,.. 's with their estimates for items 1, 6, and

8, while "Fable 6 compares the true .L,',,,, with their estnnates for items 2 and 3. From Tables 5

and 6. we see that the estimated values of ,i's arc close to their true values for all the possible

attribute states for these items (the average absolute deviation between the true and estimated

.,, is 0.0186 for Table 5 and 0.0295 for Table 6), even though the individual 7r and r estimates

are not close to the true values. Note that in Tables 5 and 6. when denoting the attribute states.

we list only the attributes required by the item. For example, in Table 5 attribute state 10 is

really (1. 0,*,*,*)7' for item 1, while it is (*, 1, 0,*,*)/. for item 6, where * denotes it can be

eit her 1 or 0.

BEST COPY AVAILABLE
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'Table 5. True and estimated for items 1, 6, 8

item 1 item 6 item 8

att ribute

state
true

So,j

estimated

Sao

true

5 ,za

estimated

S c2,

true

Sa z

est imated

Sa ,z

1 1 0.720 0.7200 0.800 0.8300 0.720 0.7000

10 0.360 0.3700 0.160 0.2000 0.000 0.0000

01 0.080 0.1224 0.100 0.0581 0.360 0.3500

00 0.040 0.0629 0.020 0.0140 0.000 0.0000

Table 6. True and estirnated for items 2 and 3

item 2 item 3

attribute
state

true
So,i

estimated
S2.,1

attribute
pattern

true

So i_,

estimated

Sa I

111 0.720 0.7400 111 0.640 0.6900

110 0.080 0.0500 110 0.160 0.0700

101 0.216 0.2072 101 0.240 0.3381

011 0.360 0.3182 011 0.064 0.0345

100 0.024 0.0140 100 0.060 0.0343

010 0.040 0.0215 010 0.016 0.0035

001 0.108 0.0891 001 0.02.1 0.0169

000 0.012 0.0060 000 0.006 0.0017

By examining Tables 1 and 3, we see that the parameter estimates of b, c1. and di are not

close to their true values. But remember when di is close to 1, we cannot expect to accurately

estimate bi and ci separately because the data contains little information about these parameters

(i.e., the likelihood surface is rather flat ). That is, we are close to a condition of unidentifiability

of the bi and c. For those items with di close to 1, as discussed earlier a comparison between

the true and estimated bi 2ci is appropriate. and Table 7 shows they are quite close.
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Table 7. Comparison of true and estimated item parameters

item true bi est. bi true c, est. ci true di esi.. di true 14 2ci est. bi 2c,

1 -0.3497 -0.533 0.90 0.80 0.90 0.97 -2.1497 -2.133

2 -0.1929 0.219 0.70 0.90 0.95 0.93 -1.5929 -1.581

4 0.0189 0.102 0.60 0.60 0.95 0.94 -1.1811 -1.098

5 -0.1832 -0.272 0.90 0.90 0.95 0.97 -1.9832 -2.072

6 0.9343 1.165 0.70 0.80 0.95 0.85 -0.4657 -0..135

8 -0.1006 -0.390 0.90 0.90 0.95 0.98 -1.9006 -2.190

9 1.0964 -0.090 0.90 0.30 0.95 0.95 -0.7036 -0.690

10 0.2996 0.770 0.60 0.80 0.95 0.85 -0 900.1 -0.830

Remember the ultimate goal of our estimating the model paraneters is to enable us to

classify the examinees cognitively. Since we are using the marginal maximum likelihood approach

to estimate the model parameters (the calibration step, preliminary to the classification step),

another way (t he right way) to look at t he estimation accuracy of our model calibration procedure

is to compare the log likelihood values given at the true and estimated parameters. Hecause of

the possibility of a relatively flat likelihood surface in certain locations of the model parameter

space, different parameter sets might give approximately the same .;:ii l.e...100d. However. if we

use the estimated likelihood as input to an exanfinee cognitive classification procedure, it is the

likelihood value rat her than the estimated parameter values that is central: t hus non-influential

differences in estimated parameter values are irrelevant.

For the model we are considering, Figure 1 gives the plot of values of the log likelihood front

each of the EN1 cycles of a particular run using our estimation program. The horizontal line in

the figure corresponds to the true log likelihood, which is -20688.66. From Figure 1, we can

see the log likelihood values for the first several EN1 cycles are rapidly approaching the true log

likelihood. After 13 or so cycles the log likelihood value is already quite stable. For the last. 15 or

so cycles the log likelihood values are increasing very slowly. The estimated log likelihood from

the final EN1 cycle is -20629.32, larger than but close to the t rue log likelihood (the reason why

the estimated log likelihood is larger than the true log likelihood for this particular run might

be (lue to the combination effect of est imat ion error and the randomness We have introduced in

generating the data).
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Figure 2. Plot 01 the Log Likelihood Values from the EM Cycles

0

5 Summary

10 20 30 40
run number

"Ihe important, need for test analysis methods that extract cognitive information useful to

the practitioners from ordinary tests is widely recognized and is a topic of vigorous research

in psychometrics and cognitive psychology. Such methods and underlying theory should be

applicable to tests that are in common use today, as well as in the future to specially constructed

diagnostic instruments based upon cognitive theory, in many cases computer administered. The

goal of developing the Unified Model was to be able to determine. on the basis of a simple test.

what the cognitive strengths and weaknesses of an examinee are, relative to a list of cognitive

attributes of interest in the particular educational setting of the test..

The Unified Model is theoretically appealing relative to other cognitive diagnostic models,

but because of its structural complexity, there is not yet estimation package available. In this

paper, we have proposed an estimation procedure for the Unified Model and have shown that

it is not only computationally feasible but effective. With an effective estimation procedure for

the Unified Nlodel, we can calibrate the model, and thus classify and estimate examinee latent

18



abilities, thereby extracting useful cognitive information about the test as 1,vell as the examinees.
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